5 resultados para Monoclonal

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background More than 50% of patients with Crohn's disease become either steroid resistant or dependent. Accordingly, development of new treatments for steroid-dependent Crohn's disease is a research priority. Aim To evaluate CDP571, a humanized antibody to tumour necrosis factor-α, for the treatment of steroid-dependent Crohn's disease. Methods Patients with steroid-dependent Crohn's disease (n = 271) were enrolled in a 36-week, double-blind, placebo-controlled trial. Steroid dependence was defined as use of prednisolone or prednisone (15–40 mg/day) or budesonide (9 mg/day) for ≥8 weeks, a previous failed attempt to decrease or discontinue steroids within 8 weeks of screening, and a Crohn's Disease Activity Index score of ≤150 points. Patients were randomized to receive intravenous CDP571 10 mg/kg or placebo 8-weekly through to week 32. Steroids were then tapered using a defined schedule. The primary efficacy endpoint was the percentage of patients with steroid sparing, defined as discontinuation of steroid therapy without a disease flare (Crohn's Disease Activity Index score ≥220 points) at week 36. Results Steroid sparing occurred in 53 of 181 (29.3%) CDP571 patients and 33 of 90 (36.7%) placebo patients (P = 0.24). Adverse events occurred at similar frequencies in both treatment groups. Conclusions CDP571 was ineffective for sparing steroids in patients with steroid-dependent Crohn's disease. CDP571 was well tolerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we describe optimization of polyethylenimine (PEI)-mediated transient production of recombinant protein by CHO cells by facile manipulation of a chemically defined culture environment to limit accumulation of nonproductive cell biomass, increase the duration of recombinant protein production from transfected plasmid DNA, and increase cell-specific production. The optimal conditions for transient transfection of suspension-adapted CHO cells using branched, 25 kDa PEI as a gene delivery vehicle were experimentally determined by production of secreted alkaline phosphatase reporter in static cultures and recombinant IgG(4) monoclonal antibody (Mab) production in agitated shake flask cultures to be a DNA concentration of 1.25 mu g 10(6) cells(-1) mL(-1) at a PEI nitrogen: DNA phosphate ratio of 20:1. These conditions represented the optimal compromise between PEI cytotoxicity and product yield with most efficient recombinant DNA utilization. Separately, both addition of recombinant insulin-like growth factor (LR3-IGF) and a reduction in culture temperature to 32 degrees C were found to increase product titer 2- and 3-fold, respectively. However, mild hypothermia and LR3-IGF acted synergistically to increase product titer 11-fold. Although increased product titer in the presence of LR3-IGF alone was solely a consequence of increased culture duration, a reduction in culture temperature post-transfection increased both the integral of viable cell concentration (IVC) and cell-specific Mab production rate. For cultures maintained at 32 degrees C in the presence of LR3-IGF, IVC and qMab were increased 4- and 2.5-fold, respectively. To further increase product yield from transfected DNA, the duration of transgene expression in cell populations maintained at 32 C in the presence of LR3-IGF was doubled by periodic resuspension of transfected cells in fresh media, leading to a 3-fold increase in accumulated Mab titer from similar to 13 to similar to 39 mg L-1. Under these conditions, Mab glycosylation at Asn297 remained essentially constant and similar to that of the same Mab produced by stably transfected GS-CHO cells. From these data we suggest that the efficiency of transient production processes (protein output per rDNA input) can be significantly improved using a combination of mild hypothermia and growth factor(s) to yield an extended activated hypothermic synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities